6,686 research outputs found

    Introduction to finite mixtures

    Full text link
    Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. In this chapter we describe the basic ideas of the subject, present several alternative representations and perspectives on these models, and discuss some of the elements of inference about the unknowns in the models. Our focus is on the simplest set-up, of finite mixture models, but we discuss also how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas traversed in the rest of this book.Comment: 14 pages, 7 figures, A chapter prepared for the forthcoming Handbook of Mixture Analysis. V2 corrects a small but important typographical error, and makes other minor edits; V3 makes further minor corrections and updates following review; V4 corrects algorithmic details in sec 4.1 and 4.2, and removes typo

    Colouring and breaking sticks: random distributions and heterogeneous clustering

    Full text link
    We begin by reviewing some probabilistic results about the Dirichlet Process and its close relatives, focussing on their implications for statistical modelling and analysis. We then introduce a class of simple mixture models in which clusters are of different `colours', with statistical characteristics that are constant within colours, but different between colours. Thus cluster identities are exchangeable only within colours. The basic form of our model is a variant on the familiar Dirichlet process, and we find that much of the standard modelling and computational machinery associated with the Dirichlet process may be readily adapted to our generalisation. The methodology is illustrated with an application to the partially-parametric clustering of gene expression profiles.Comment: 26 pages, 3 figures. Chapter 13 of "Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman" (Editors N.H. Bingham and C.M. Goldie), Cambridge University Press, 201

    A structural Markov property for decomposable graph laws that allows control of clique intersections

    Full text link
    We present a new kind of structural Markov property for probabilistic laws on decomposable graphs, which allows the explicit control of interactions between cliques, so is capable of encoding some interesting structure. We prove the equivalence of this property to an exponential family assumption, and discuss identifiability, modelling, inferential and computational implications.Comment: 10 pages, 3 figures; updated from V1 following journal review, new more explicit title and added section on inferenc

    Sampling decomposable graphs using a Markov chain on junction trees

    Full text link
    Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs, except for problems of very small scale. In this paper we develop new, more efficient methodology for such inference, by making two contributions to the computational geometry of decomposable graphs. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected complete subsets of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chain Monte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with numerical experiments on three specific models.Comment: 22 pages, 7 figures, 1 table. V2 as V1 except that Fig 1 was corrected. V3 has significant edits, dropping some figures and including additional examples and a discussion of the non-decomposable case. V4 is further edited following review, and includes additional reference

    Julian Ernst Besag, 26 March 1945 -- 6 August 2010, a biographical memoir

    Full text link
    Julian Besag was an outstanding statistical scientist, distinguished for his pioneering work on the statistical theory and analysis of spatial processes, especially conditional lattice systems. His work has been seminal in statistical developments over the last several decades ranging from image analysis to Markov chain Monte Carlo methods. He clarified the role of auto-logistic and auto-normal models as instances of Markov random fields and paved the way for their use in diverse applications. Later work included investigations into the efficacy of nearest neighbour models to accommodate spatial dependence in the analysis of data from agricultural field trials, image restoration from noisy data, and texture generation using lattice models.Comment: 26 pages, 14 figures; minor revisions, omission of full bibliograph

    Sensitivity of inferences in forensic genetics to assumptions about founding genes

    Full text link
    Many forensic genetics problems can be handled using structured systems of discrete variables, for which Bayesian networks offer an appealing practical modeling framework, and allow inferences to be computed by probability propagation methods. However, when standard assumptions are violated--for example, when allele frequencies are unknown, there is identity by descent or the population is heterogeneous--dependence is generated among founding genes, that makes exact calculation of conditional probabilities by propagation methods less straightforward. Here we illustrate different methodologies for assessing sensitivity to assumptions about founders in forensic genetics problems. These include constrained steepest descent, linear fractional programming and representing dependence by structure. We illustrate these methods on several forensic genetics examples involving criminal identification, simple and complex disputed paternity and DNA mixtures.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS235 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore